
no excuses
for no automatic testing on c++ projects

by Dmitry Ledentsov on 26.03.2015
presented at TU München

for the MUC++ Meetup

http://www.meetup.com/MUCplusplus/events/220628575/

Why?
• humans make mistakes

• heard and made many excuses

• seen benefits of the empirical approach

• would like to hear more excuses

• by testing I don’t mean hours of manual clicking to see if
something that you waited for half an hour to compile works

• tests: automated, preferably fast, useful, “just enough"

for today
• excuses

• libraries: a run-through, a tracer bullet

• code

• links (clickable)

• books

• discussion

a situation
It’s Thursday. Your boss asks you to deliver a shaky feature for Monday.

You accept, but discover the task not as easy as thought.

There are risky dependencies that might break - it’s a big ball of mud

But! There’s an easy hack! Who needs testing, I’ll be ready by Monday!

excuses not to test
• no time, gotta deliver

• boss forbids to

• no tools for c++

• too long or hard to set up testing environment

• dependency hell

• I know what I'm doing!

• nobody tests around here
name yours later!

get scared

Prag prog Clean coder

Source: Amazon

http://www.amazon.de/Pragmatic-Programmer-Journeyman-Master/dp/020161622X/ref=sr_1_1?ie=UTF8&qid=1425995622&sr=8-1&keywords=pragmatic+programmer
http://www.amazon.de/Clean-Coder-Conduct-Professional-Programmers/dp/0137081073/ref=sr_1_2?ie=UTF8&qid=1425995661&sr=8-2&keywords=clean+coder

questions
• how do you know it works, then?

• how do you know it's the right thing?

• how does it affect the rest of the system?

• does it have the expected quality?

• how do others know what exactly you've done?

no time, gotta deliver
it'll bite you back!

TECHNICAL DEBT

http://blog.crisp.se/2013/07/12/henrikkniberg/the-solution-to-technical-debt

boss forbids to

you'll be blamed for failure!

how does he know, you’ve done your job properly?

too complicated
to set up or learn

let's talk about that

some subjective priorities
when choosing a tool

• sufficient documentation/test/community (quality)

• platform-'independent'

• single header

• header-only

• single header, single source

• builds ad hoc

• builds out of the box

no tools for c++
/

don’t know how

let's see what we've got

starting small
#define CATCH_CONFIG_MAIN
#include <catch.hpp>

TEST_CASE("failing") {
FAIL("wrote a failing test!");

}

catch-lib.net

• single header

• very little to learn

http://catch-lib.net

failing

src/no_excuses.cpp:4
...

src/no_excuses.cpp:5: FAILED:
explicitly with message:
 wrote a failing test!

===
test cases: 1 | 1 failed
assertions: 1 | 1 failed

a neat feedback

fix it
TEST_CASE("that's easy") {
CHECK((2 + 2) == 4);

}

==
All tests passed (1 assertion in 1 test case)

expression template magic —> simple assertion macros

a simple build config
include 'premake'

make_solution 'no_excuses'

platforms 'native'

includedirs {
'deps/Catch'

}

make_console_app('no_excuses', {
'./src/no_excuses.cpp'

})

run_target_after_build()

https://github.com/d-led/premake-meta-cpp

http://premake.bitbucket.org

https://github.com/d-led/premake-meta-cpp
http://premake.bitbucket.org

before we continue
there are anti-patterns

TEST_CASE("blop_blup","[mip][x63h]") {
auto i = blop_blup(77);
i += 21;
strt_wbsrvr_chk();
CHECK(zog(i) == 42);
}

• what's that about?

• what is it trying to convey?

• will you understand it tomorrow?

http://geekandpoke.typepad.com/geekandpoke/2011/10/ddt.html http://geek-and-poke.com/geekandpoke/2013/7/28/tdd

http://geekandpoke.typepad.com/geekandpoke/2011/10/ddt.html
http://geek-and-poke.com/geekandpoke/2013/7/28/tdd

before we continue

TEST_CASE("finding the ultimate answer","[answer][ultimate]") {
REQUIRE(find_ultimate_answer() == 42);

}

• wouldn’t it be nice if test read like English?
• you might be able to read and understand it tomorrow

structuring tests
TEST_CASE("my superb feature") {

CHECK(feature() == ok);
}

TEST_CASE("another feature") {
SECTION("preparing stuff") {

auto stuff = prepare_stuff();
REQUIRE(stuff.get());

SECTION("stuff should work") {
CHECK(stuff->works());

}
}

}

tests are code - it’s still a good idea to structure them

mocks? that's for Java!

google
mock

https://code.google.com/p/googlemock/wiki/ForDummies
https://code.google.com/p/googlemock/wiki/ForDummies

an interface and its mock
struct id_source {
 virtual int new_id() = 0;
 virtual ~id_source() {}
};

class mock_id_source : public id_source {
public:
 MOCK_METHOD0(new_id, int());
};

yes, you can use them as template parameters too

mock configuration & test
auto ids = std::make_shared<mock_id_source>();
auto fac = factory(ids);

using ::testing::Return;
EXPECT_CALL(*ids, new_id())
 .Times(1)
 .WillRepeatedly(Return(42));

EXPECT_EQ("42", fac.new_element()->id());

behavior-driven?
that's for ruby

here's a cheap one

catch-lib.net

http://catch-lib.net

focus on behavior
SCENARIO("acquiring wisdom") {

GIVEN("an oracle") {
oracle gus;

WHEN("I ask it to speak") {
auto answer = gus.speak();

THEN("wisdom is apparent") {
CHECK(answer != "bla");

}
}

}
}

pretty failure reporting

Scenario: acquiring wisdom
 Given: an oracle
 When: I ask it to speak
 Then: wisdom is apparent

src/no_excuses.cpp:15
...

src/no_excuses.cpp:23: FAILED:
 CHECK(answer != "bla")
with expansion:
 "bla" != "bla"

===
test cases: 2 | 1 passed | 1 failed
assertions: 1 | 1 failed

test quality

• who do you write the test for?

• what's its value?

• what's its maintenance cost?

communicating via
specification

let's grow cucumbers

what are you doing,
actually?

here’s the user story!

It’s Monday, and your boss wants to know what you’re coding.

The feature should have been implemented by morning!

Do you have an answer?

specification by example

https://cukes.info

• you’re not testing, but specifying behaviour of software

• communicating in a semi-formal, but readable language

• the specification is parsed to drive tests

https://cukes.info

readable specification:
gherkin

language: en
Feature: Addition
 In order to avoid silly mistakes
 As a math idiot
 I want to be told the sum of two numbers

 Scenario Outline: Add two numbers
 Given I have entered <input_1> into the calculator
 And I have entered <input_2> into the calculator
 When I press <button>
 Then the result should be <output> on the screen

 Examples:
 | input_1 | input_2 | button | output |
 | 20 | 30 | add | 50 |
 | 2 | 5 | add | 7 |
 | 0 | 40 | add | 40 |

https://github.com/cucumber/cucumber/blob/master/examples/i18n/en/features/addition.feature

https://github.com/cucumber/cucumber/wiki/Gherkin

localizable

https://github.com/cucumber/cucumber/blob/master/examples/i18n/zh-CN/features/addition.feature

github.com/.../cucumber-cpp
Feature: Elements with Ids
 In order to manage objects
 As a user
 I want objects to be identifiable

 Scenario: first element
 Given an element source
 When I request an element
 Then its Id is not 0

THEN("^its Id is not 0$") {
 ScenarioScope<Elements> context;

 specify(context->ids.size(), should.equal(1));
 specify(context->ids[0], not should.equal("0"));
}

failing
language: en
Feature: Elements with Ids
 In order to manage objects
 As a user
 I want objects to be identifiable

 Scenario: first element # features/elements.feature:8
 Given an element source # cppspec_steps.cpp:26
 When I request an element # cppspec_steps.cpp:30
 Then its Id is not 0 # cppspec_steps.cpp:38
 expected 0, but was 0 (Cucumber::WireSupport::WireException)
 features/elements.feature:11:in `Then its Id is not 0'

Failing Scenarios:
cucumber features/elements.feature:8 # Scenario: first element

1 scenario (1 failed)
3 steps (1 failed, 2 passed)
0m0.010s
Done.

Feature: Elements with Ids
 In order to manage objects
 As a user
 I want objects to be identifiable

...

 Scenario: consecutive elements # features/elements.feature:13
 Given an element source # cppspec_steps.cpp:26
 When I request an element # cppspec_steps.cpp:30
 And then I request another element # cppspec_steps.cpp:30
 Then the names of the elements are different # features/elements.feature:17

2 scenarios (1 undefined, 1 passed)
7 steps (1 undefined, 6 passed)
0m0.028s

You can implement step definitions for undefined steps with these snippets:

THEN("^the names of the elements are different$") {
 pending();
}

missing step definitions

the stakeholders can change the specification and see the impact of the change

I don't believe you!
I know what I'm doing!

http://geek-and-poke.com

measure it!
#include <iostream>
#include <hayai.hpp>
#include <boost/lexical_cast.hpp>

BENCHMARK(Stringify, stringstream, 1000, 3000)
{
 std::stringstream ss;
 ss<<42;
 auto res = ss.str();
}

BENCHMARK(Stringify, lexical_cast, 1000, 3000)
{
 auto res = boost::lexical_cast<std::string>(42);
}

https://github.com/nickbruun/hayai
https://github.com/DigitalInBlue/Celero

https://github.com/nickbruun/hayai
https://github.com/DigitalInBlue/Celero

measure and remeasure!
[==========] Running 2 benchmarks.
[RUN] Stringify.stringstream (1000 runs, 3000 iterations per run)
[DONE] Stringify.stringstream (1917.194273 ms)
[RUNS] Average time: 1917.194 us
 Fastest: 1567.196 us (-349.998 us / -18.256 %)
 Slowest: 3757.601 us (+1840.407 us / +95.995 %)

 Average performance: 521.59555 runs/s
 Best performance: 638.08228 runs/s (+116.48673 runs/s / +22.33277 %)
 Worst performance: 266.12724 runs/s (-255.46830 runs/s / -48.97824 %)
[ITERATIONS] Average time: 0.639 us
 Fastest: 0.522 us (-0.117 us / -18.256 %)
 Slowest: 1.253 us (+0.613 us / +95.995 %)

 Average performance: 1564786.64799 iterations/s
 Best performance: 1914246.84596 iterations/s (+349460.19797 iterations/s / +22.33277 %)
 Worst performance: 798381.73345 iterations/s (-766404.91454 iterations/s / -48.97824 %)
[RUN] Stringify.lexical_cast (1000 runs, 3000 iterations per run)
[DONE] Stringify.lexical_cast (573.416800 ms)
[RUNS] Average time: 573.417 us
 Fastest: 456.937 us (-116.480 us / -20.313 %)
 Slowest: 1302.187 us (+728.770 us / +127.093 %)

 Average performance: 1743.93216 runs/s
 Best performance: 2188.48550 runs/s (+444.55334 runs/s / +25.49144 %)
 Worst performance: 767.93886 runs/s (-975.99330 runs/s / -55.96510 %)
[ITERATIONS] Average time: 0.191 us
 Fastest: 0.152 us (-0.039 us / -20.313 %)
 Slowest: 0.434 us (+0.243 us / +127.093 %)

 Average performance: 5231796.48730 iterations/s
 Best performance: 6565456.50713 iterations/s (+1333660.01983 iterations/s / +25.49144 %)
 Worst performance: 2303816.57934 iterations/s (-2927979.90796 iterations/s / -55.96510 %)
[==========] Ran 2 benchmarks.

data-driven? script it!
#include <counter/counter.h>

#include <lua.hpp>
#include <LuaBridge.h>
#include <RefCountedPtr.h>

void register_bindings(lua_State* L) {
 luabridge::getGlobalNamespace(L)
 .beginNamespace("my")
 .beginClass<counter<>>("counter")
 .addConstructor<void(*)(), RefCountedPtr<counter<>>>()
 .addFunction("next", &counter<>::next)
 .endClass()
 .endNamespace()
 ;
}

#ifdef _MSC_VER
#define TEST_BINDINGS __declspec(dllexport)
#else
#define TEST_BINDINGS
#endif

extern "C" TEST_BINDINGS int luaopen_test_bindings(lua_State* L) {
 register_bindings(L);
 return 0;
}

bdd-style without recompilation of steps
assert(require 'test_bindings')

describe("a counter",function()
local counter = my.counter()

local starting_value = counter:next()

it("should start with a zero",function()
assert.are.equal(starting_value, 0)

end)

it("should continue with an increment of 1",function()
assert.are.equal(counter:next(), 1)
assert.are.equal(counter:next(), 2)

end)
end)

http://olivinelabs.com/busted/

red—>green
cpp-testing-no-excuses$ busted
●
1 success / 1 failure / 0 errors / 0 pending : 0.002864 seconds

Failure → ./spec/counter_spec.lua @ 14
a counter should continue with an increment of 1
./spec/counter_spec.lua:16: Expected objects to be equal.
Passed in:
(string) 'oops!'
Expected:
(number) 2

…

cpp-testing-no-excuses$ busted
●●
2 successes / 0 failures / 0 errors / 0 pending : 0.001519 seconds

there's more to testing
• nonfunctional tests: code quality tools

• stress/load testing

• property-based testing (quickcheck++)

• eyeball testing

• name yours...

there's more to testing
• Management

• Team

• Prioritization

• Maintenance

• Style

• Learning

• Living documentation

just enough, just in time

XP explained 2e

Source: Amazon

http://www.amazon.de/Extreme-Programming-Explained-Embrace-Embracing/dp/0321278658

dependency hell
aka big ball of mud

Source: Amazon

http://www.amazon.de/Working-Effectively-Legacy-Robert-Martin/dp/0131177052

don't forget
the big picture

more reading
• Jeff Langr - Modern C++ Programming with Test-Driven Development: Code

Better, Sleep Better

• Kent Beck - Test Driven Development: By Example

• Robert C. Martin - Clean Code: A Handbook of Agile Software Craftsmanship

• Jef Raskin - The Humane Interface: New Directions for Designing Interactive
Systems

• Henrik Kniberg - * from the Trenches, Agile Product Ownership *

• Gerard Meszaros - http://xunitpatterns.com/

• Testable code via SOLID & FIRST principles

• Books by Tom DeMarco

• name yours…

https://www.crisp.se/file-uploads/Lean-from-the-trenches.pdf
http://wwwis.win.tue.nl/2R690/doc/ScrumAndXpFromTheTrenchesonline07-31.pdf
http://blog.crisp.se/2012/10/25/henrikkniberg/agile-product-ownership-in-a-nutshell
http://xunitpatterns.com/
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://addyosmani.com/first/

code

https://github.com/d-led/cpp-testing-no-excuses

thank you!
ledentsov.de

github.com/d-led

http://ledentsov.de
http://github.com/d-led

• What are you excuses? Why NOT test?

• What's your biggest pain?

• Would you like to present your topic?

• Your unique set-up?

• ...

discussion welcome!

